
UNCLASSIFIED

AD NUMBER

AD407403

NEW LIMITATION CHANGE

TO
Approved for public release, distribution
unlimited

FROM
Distribution authorized to DoD and DoD
contractors only;
Administrative/Operational Use; 1963.
Other requests shall be referred to Army
Research Office, Research Triangle, NC.

AUTHORITY

USARO ltr, 9 Feb 1971

THIS PAGE IS UNCLASSIFIED



oi

UNCLASSIFIED

* ~ AD

DEFENSE DOCUMENTATION CENTER
FOR

SCIE NTIFIC AND TECHNICAL INFORMATION

CAMERON STATION. ALEXANDRIA. VIRGINIA

JI I1

UNCLASSIFIED



NOTICE: When government or other drawings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
government procurement operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have formulated, furnished, or in any way
supplied the said drawings, specifications, or other
data is not to be regarded by implication or other-
wise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that my in any way be related
thereto.



C-,

m €TECHNICAL REPORT 2.1

cz~ "ROTATION DESIGNS FOR SAMPLING

D.,- cm •ON REPEATED OCCASIONS"'

by

/) J. N. K. Rao and John E. Graham

Prepared under Grart DA-ARO(D)-31-124-G93

Requests for additional copies by Agencies of the Department of
Defense, their contractors, and other Government agencies should
be directed to:

Armed Services Technical information Agency
Arlington Hall Station
Arlington 12, Virginia

Department of Defense contractors must be established for ASTIA
services or have their "need-to-know" certified by the cognizant
military agency of their project or contract.

NCIi



ROTATION DESIGNS FOR SAMPLING ON REPEATED OCCASIONS*

J. N. K. Rao and Jack E. GrabaM
Iowa State University

1. INTRODUCTION

There are many studies, notably in sociological and economic research,

which are concerned with estimating characteristics of a population on

'repeated occasions' in order to measure time-trends as well as the current

values of characteristics as a time series. For example, the Current

Population Survey (C.P.S.) of the Bureau of the Census is, among other

things, concerned with estimating monthly and yearly changes in the level

of unemployment. Estimation problems in time series analysis have, of

course, received considerable attention for same time but most of these

studies are devoted to the estimation of parameters in time series models

usually involving the concepts of infinite populations. On the other hand,

most of the distribution free theory of sampling finite populations is

concerned with estimates applying to a population at one particular time,

and applies to so-called 'one shot surveys'. In this study we attempt a

combination of finite population sampling with time series analysis. This

activity, sometimes referred to as 'sampling on repeated occasions', has

already received some attention although sane of the references we discuss

below are only concerned with infinite population models.

When the some population is sampled repeatedly, the opportunities for

a flexible sample design are increased. For example, on the hth occasion

we may have parts of the sample that are matched with the (h-l)th occasion,

parts that are matched with both the (h-l)th and the (h- 2 )th occasions,

*Research sponsored by Army Research-Office, Durbm, N. C., under

Grant go. lA~-ARO(D)-,l-l24-a9,.
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and soon. Such a method of partial matching has been termed "sampling

on successive occasions with partial replacement of units" ([5]), "rotation

sampling" ([2]), and ""spling for a time series" ([31). The optimum -

placement policy for two occasions has been investigated by Jessen [141 and.

the general problem of replacement for more than two occasions has been

examined by 'fates [7], Patterson [5], Eckler [21, and several others.

However, the theory has been almost exclusively confined to infinite

populations. A good summary of these papers is given by Cochran (i].

In the Current Population Survey conducted monthly by the U. S.

Bureau of the Census (Ransen et al. [3]), a rotation sampling design is

imposed within each primary mainly for the purpose of reducing response

resistance (which may occur if the same panel of households is interviewed

indefinitely), and to reduce the within primary camponent of variance of the

estimates under certain circumstances. The rotation pattern is as follows:

eight systematic sub-samples (rotation groups) of segments are identified

for each sample. A given rotation group stays in the sample for four

consecutive months, leaves the sample during the eight succeeding months,

and then returns for another four consecutive months. it is then dropped

from the sample. Under this system of sampling, 75 per cent of the sample

segments are caron between consecative months and 50 per cent are ca ron

between the same months of two consecutive years.

The camposite estimator of the population mean, X0 , of the current

month (donoted by 0) in this survey is

SQ(0 . + X0- - 7, 0 )+((l )- (Q)

where Q is a constant weight factor with 0 S Q i 0 is the estimator

bued on the entire sample for the current month, 0• 2,-1 is the estimator
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for the current month but based on the sample segments common to both months

0 and -1, x lO is the estimator for the previous month, -1, but based on

the sample segments coon to both months 0 and -1, and x' is the composite-1

estimator for the previous month, -I. The cumposite estimator of the change,

S0is

d xI - x. (2)

The composite estimators take advantage of the information obtained on

previous occasions as well as the information from the current occasion,

and results in smaller variances for both the current estimate and the

estimate of change for most of the characteristics; the larger gains are

usually achieved for the estimate of change. Hansen et al. [3] have given

the variance of xI and d', for their particular rotation pattern, under
0 0'

same simplifying assumptions and investigated the reduction in the within

primary component of the variance of x' and d' for some alternative assumed

correlations between months and for selected values of Q.

The purpose of the present study is to develop a unified finite pop-

ulation theory for the composite estimators and d'. We formulate a

general rotation pattern and obtain the variance of the composite esti-

mators explicitly. We also obtain the optimum values of Q under certain

simplifying assumptions regarding the correlation pattern fram occasion to

occasion. The vaeziance for the particular rotation pattern used by

Hansen et al. can be obtained as a special case from the general results.

Onate [6], in developing multistage designs for the Philippine Sta-

tistical Survey of Households, divided each sample barrio (a second stage

unit that corresponds to a township in the Urnited States) into a small

number of segments (less than 10) and specified a particular rotation



pattern for the segments. This rotation pattern was mainly intended to

reduce the response resistance of panel households, for it was observed

that the households tended to become uncooperative during the third or

fourth visit. Moreover, Onate developed a finite population theory for

the cnmposite estimator of the barrio total for his special rotation

pattern (which is a special case of the general rotation pattern). We

follow Onate's approach in developing a finite population theory for the

general rotation pattern. We give here the results for single-stage

designs, but the extension to multistage designs, etc., is relatively

straightforward and therefore is not presented here.

2. THE GENERAL ROTATION PATTERN

We assume that the actual units in the population remain unchsanged in

time, and denote by N and n the population and sample sizes, respectively

(which are the same for all occasions). Also, let N and n be multiples of

n2 (>L 1). Then the rotation pattern is as follows: A group of n2 units

stays in the sample for r occasions (n = n 2 r), leaves the sample for m

occasions, comes back into the sample for another r occasion, then leaves

the sample for. occasions, and so on. If a unit returns to the sample

after having dropped out (k - 1) previous times from the sample, we say

the unit is in the kth cycle. We only consider the case m > r here, for

case m: < r is more comnplicated and less useful in practice. The maximum

value of m is r(E - 1) and, if mi is less than the maximnu value, it

amounts to covering only a fraction, viz., nem + n of the N units in the

rotating design.

Illustration. Let N 5, n - r a 2 and m- 3. Figure . illustrates
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the
the rotation pattern for a particular numbering of/5 units in the population.

There are 5! possible permutations corresponding to the 5! ways of numbering

the units in the population. The numbers I to 5 are assigned to the 5 units

in the population. These permutations provide the stochastic input into

the sampling design since it amounts to saying that the sample consists of

one permutation selected at random fram the finite population of 5!

permutations.

Figure 1. Rotation pattern with N 5, n= r 2 and m =3.

Visit

Unit -6 -5 -4 -3 -2 -1 0

1 X x x

2 X X X X

3 x x x

4 x x

5 x x

In general, the finite population is composed of the N! possible

permutations and the sample consists of one randomly selected permutation

from this population.

3. THE C()OP0ITE ESTDATORS ;tand d

Let denote the value of the characteristics for the jth unit on

th
the a occasion, (a - 0, -1, ... , -u; j 1 I, ... , N), where -u denotes

the occasion at which sampling first takes place. We assume that u is

large in order to simplify the derivation of the variance formulae.

The composite estimator of the current occasion population mean, X, is
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;-' = Q(,-;,, + ;o,-li "•-do + (1 - Q) ;0 (3)

where

"",a = /nl, x -/ x x /r
Zz a 'a, j 1 c-1, a a-0 1, j/ 1  Xa a, x

x' is the ccmposite estimator for occasion -1, and 0 _ Q (1.

Here nI o n2 (r - 1) is the number of units matched between occasions a - 1

and a. The cospouite estimator of the population change, 70 - -i' is

do - x-•- x-
0 0 -1 (4)

Now xo' can be written as

-u -- u N
X; E a c -o WC, w- , k ýq, k (5)

where
wC, Q(x-, - x-•l, ) + (l - Q) • (6)

fora = 0, -1, ... , - (u - 1), W = 7 and thew are functions of'Q,-u -u Wa,k

r and n2 . From (5) and (6) it may be verified that the weights wk are as

follows:

For the current occasion, a = 0,

(a) WO,k - (1 - Q)/n for n2 units (first visit of a cycle)

(b) Wo,k - (1 - Q)/n + Q/n1 for n2 units (second to rth
visit of a cycle) (7)

(c) wO,k = 0 for N - n units (not in the sample)

For occasions a = -i, ... , - (u - ),

7 -a
(a) Q(Ik n n- for n2 units (first visit of a cycle)

(b) , • '•£1(s-. + Q for n,.- n units (second
Va n nl nl to (r-l)th visit of a cycle) (8)

Q(ctw - QA + for n2 units (rth visit of a cycle)
(C) wk n n f
(d) wak 0 for N - n units (not in the sample)



7

For occasion -u, W-u,k = QU(1/n - 1/n1 ) for n, units (first to (r-l)th visit),

Wuk =QU'/n for n2 units (rth visit), and W u,k = 0 for N-n units (not in

the sample). Therefore, the averages of the weights over the N! possible

permutations are N 1N

E7v 1  Z(N -1)! w - I

Ok N. 1  k N 1  , - N
and

N NE~ i 7. (N - 1)! wok E wa•,k 'a<0

ck •" 1 c,

Hence, x-- is an unbiased estimator of X0 . Similarly, do is an unbiased

estimator of 70 - -1°

4. VARIANlCE OF ;ý1AND OPT?4UMQ

4.1 Variance of 7-t

Since u is assumed to be large, the variance obtained by replacing -u

by -oo will be virtually the sBme as the true variance. Therefore, the

variance of x-1, v(7), is
v(7;• •(7;) .- 2o

V( -) E(x7 2 ) _ -2

-CD N 2 2 0 N
E E E(wa,k x,k + E E E(w wak) x•,kxalk

cf=O k-l *a, kk 4~x1 a_,kak ckak
=0

-Co N -CD N
+ z z (w) x • + z z E(w alkw )

Como kk' 'wa k wak) Xa,k Xakt * 4k I
=1 .0 - =I . x ak x lk

(9)
N N

Now, since Ew ,k = 1 and Z ,wak = O, a< O,

1 OEk 2 ~
H(Wo,k wO,k=)-- -NFN- ) "'- N- E(w10,k

E~ )=-~ E(w ), ( (10)E(Wa,k ak') (i Wa,k), a < 0
and

.(WCk W•,,) N 1 .(wak wak); a a• ' -0, -1,..., -o0
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using (io) in (9), we have

-00
2 E 2 13E 2 2

+ N E E(waok walk) S a,aW (11)

where is the mean square for the ath occasion and S3 ,aa is the mean

product between occasions a and Wt Note that the variance formula (11) is
N

quite general and is applicable for any set of weights wak such that Z wg k 0.-

N
a< O, and W =1.

1 Ok
For the general rotation pattern the weights wO,k are given by (7) and

the weights wa,k (a < 0) are given by (8). Using these weights, we evaluate
E2

E(w ) and 2(w w ). Now
fa, k) adE(a,k wW k

N ne
2 N 2 n 2)

NE(wo,k) =. wo k (12)
1 0,k

and
2~ N 2  n2  -2a 2 n2

1 wk WnQ (Q + 2-! Q + 1), a 0.
nnlN

NtnthtN E.( w wk W, = w w--, usn g

Noting that N E(w1kwoek) =Z ,k walk' and using the general rotation

pattern and the weights in (7) and (8), we obtain, after simplification,

the expectations E(wak Wak) given in Appendix A. For example, since nI

units are common between occasions 0 and -s(r + m) - 1, s - 0, ... , co,

N
NE (wOwk ws(m),k E ,k ws(r+).,N Wo~ w~sr+•.•, 0 ,k

1

n(l n n)

(n, -n + Q- +-0.

=~~ --+ (n+ )2( 1 nj

n2 n
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Substitution in (Ui) of the expectations (12) and those of Appendix A yields

the variance formula in Appendix B. It is interesting to note from Appendix B

that the effect of the finite population of size N on V(1) is simply to

subtract -S 2N from the variance of ; derived by assuming N infinite.

The variance formula (B-1) is very unwieldy and, therefore, we consider

two models for S2 and S which simplify the variance formula and enable
te

the evaluation of optimim Q.

Model 1. We first consider an exponential correlation pattern. The model is

S2 S2  , S S and S O, P p- 2  (13)a 0 8aoap-~ 0,0 OP 0

a, 0 -1, -2, ... , -O.

This model has been used by Patterson [5] and others, and appears to be a

satisfactory assumption in many practical situations. Equation (13) is a

special case of a more general model S.= S0 pa with p = 1 + • ,where S is

a small positive number. Our calculations, however, have shown that the

variance with ý = 0 is practically the same as the variance with a small S

(say 0.03). Therefore, we confine our study here to the simpler model, (13).

With this model, the variance of x•, given in Appendix B, reduces to

V _1+QSo
n N 0 2 2 2 2

2Q [ rp2 - (r2 + 1) p + r] + [r - lp p2 - 2(r - I) p + r(r - 1)j

(r l) 2 p + Qr r-l( Q22 (r l) 2 + r(r -)p]

+ [ (re 2- 2r + 2) p 2 + 2r p -re 2 (r p ) 2 + r(r - )P

+ = pm+l( .3 [- r 2p 2 + r(r + 1) r] + Q 2 [ 2r(r - 1)p - (r-1)Cr+l)]'

+ Q -r(r - 1) p -(r - 1)(r - 2)] + (r -1)2 )+ em+r Pre+r( CQ3 [r(r - 1)p 2
2 2 2 2

r(r - 1) ID+I + r p (2r r + 1) J + rj + Q [(r -l)(r - ) p

+ r(r - 1)] - )r - r(r - 2)1 r• (14)
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For moderate and large values of m (which implies that N is large), the

following formula for V(xt), obtained fran (14) by substituting m o

and ignoring the finite population correction term (i.e., the term -S;N),

ls a good approximation:
,2O 3 2

V(;Ol) .S; + 2q r So 2 2 _ 2 + 1)p+r

n nl(l -2)(1 - p

+ Q[r(r - 1) p2 _ 2(r - 1) p + r(r -)] (r -1) 2 p + Qrr-

(Q 2 [ (r - 1) p 2 + r(r - l) p ]+ Q (r 2 - 2r + 2) p2 + 2 p - r2j

- (r-i p2 + r(r )p) (15)

Our calculations in sub-section 4.2 indicate that for moderate and large

values of m, V(70) as obtained from (15) differs very little fram that

obtained fram (14), and the optlma values of Q are unaffected by m in

moot cases.

The special case xa,k - Xt9k, a' - 0, -1, ... , -xo, provdes a check

on (14). ý Then x-6 reduces to
a-Q)-

CA-0
and

v() ( -Q)
2 [ E -2a V(7c) + 2 Z~ Q-CEQ-C' o~~ a)0 O0 (i6)

Now

-n 2 (r -,t) 112
=o 2 ' - S2 for t<rCOv(xa X7as(r+m)-t) P -T N 0O

2 
n

Cov(x, 0a~s(r+)t) .... N for r -< t m

and

- for 1 t r.
n
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Substituting these values into (16), we find, after simplification,

2 2n 2 QS 0 _l(r_ 1) S2m2 

(217

n N n2 (1- e) )(1 -+

The special case x ,k = x ak implies p - 1. With p - 1, (l4)reduces to

(17), thus providing a check.

The per cent gain In efficiency of x-t over 0 is

, .V(70 x 10(8)
v()

where

Veo7-0 S2. (19)

Model 2. We now consider an arithmetic correlation pattern similar vo that

of Hansen et al. [3]. As mentioned earlier, the empirical results with

Model 1, given in sub-section 4.2, indicate that V(;) computed from (14)

with m - oo differs very little from V(-i) with moderate m, and the optimunm

Q is unaffected in most cases. In order to simplify the discussion we,

therefore, confine ourselves here to an arithmetic correlation pattern and

to the variance of x' with m w cD. The model is;0
2, 2

S S2, Sa,+p = so, , ap = -I, ... , -CO; t - I, 2, ... , r-1 (20)

SOam [p + (Oc+ 1) d ] SO for - (a + l) d < p

= 0 for - (ca+ ) d > p

where d is a small positive number. Using (20) in the general variance

formula, given in Appendix B, with m = co, and neglecting the finite popula-

tion correc5ion term, we btain
6X) S - 2 02 [r(r-1) - r(3r-4)Q + 3r(r-2) Q2

S n (r--) -(-Q)( -Q)

- r(r-4)Q3 - r Q 4 + Q P[ (r-i)2 + (r-l)(2r-3) Q + (2r-3) Q2 - (2r2_4rl)Q3

+ r(r14.)Q '+rQ5] + Q 2d.[ (r-1)(r-2) - (r-2)2 Q - (r2 2_r.2)Q + r(r-4)Q3 + Qj
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2S2 Qr+ld
. 0 r(r,2) + (3r -8r+2)Q - (3r 2-lor+4)Q

0S2 Qr+l
+ (r -4r+2)Q3 I r+ 1(2)

The per cent gain in efficiency of x• relative to x0 may be computed fran

(18) using (21) and (19) without the finite population correction.

4.2 aptimm nd per cent gain in efficiency

Model 1. Using an ZW 7074 with a 20k memory we computed the per cent gain

in efficiency from (14), (18) and (19) for Q = 0.1(0.1)0.9, p - 0.5(0.1)0.9,

r = 2(1)4(2)8 and s = Br with a = 1(1)4, co. In computing the per cent

gain in efficiency we ignored the term -SIN in (14) and (19), since it does

not change the optimum value of Q. The effect of ignoring -S 2N is to

decrease the per cent gain in efficiency. The optInium Q for each combination

(r, p, m) is that value of Q which gives the maximum per cent &'aU in

efficiency. The optimum Q given below is correct to only the first decimal

place. However, it is quite satisfactory since small deviations fran the

true optimum lead only to a very smnal loss in efficiency. Table I gives

the per cent gain in efficiency and the optimum Q for the selected values

of r, m. and p. Several interesting results emerge from Table 1. First,

the value. of V(3ý1) for moderate a is virttally the same as that for

m. oo obtained from the simplified formula (15). Secondly, the oplimim Q

is unaffected by m (except for the case r . and p = 0.9 where the optimumn

Q deviates by 0.1 from z = 4 to m = 8). Thirdly, the optiznn value of r

is 2. However, if we are interested in estimating the change simultaneously

then r = 2 may not be optimnu. Moreover, other practical considerations may

scmetimes evarrant the use of an r other than 2. Finally, the gains in

efficiency of 7t over x are only moderate, even with a fairly high p.
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Table 1. Per cent gain in efficiency of - over xO, and in parantheses

optimum Q

p
m 0.5 0.6 0.7 0.8 0.9

r= 2

2 5.2(0.2) 8.5(0.2) 14.2(0.3) 22.8(0.4) 38.8(0.5)

4 5.3(0.2) 8.7(0.2) 15.3(0.3) 26.7(0.4) 50.6(0.5)

8 5.3(0.2) 8.7(0.2) 15.3(0.3) 27.1(0.•4) 55.7(0.6)

00 5.3(0.2) 8.7(0.2) 15.3(0.3) 27.1(0.4) 56.2(0.6)

r - 3

3 4.2(0.2) 7.2(0.3) 12.0(0.4) 20.2(0.5) 36.6(0.6)

6 4.2(0.2) 7.3(0.3) 12.4(0.4) 22.3(0.5) 45.3(0.6)

9 4.2(0.2) 7.3(0.3) 12.4(0.4) 22.4(0.5) 46.7(0.6)

O 4.2(0.2) 7.3(0.3) 2.Aio.4) 22.40o.5) 47.o(o.6)

4 3.3(0.2) 5.8(0-3) 9.8(0.4) 17.1(0.•5) 32.4(0.6)

8 3.3(0.2j) 5.8(0.) 9.9(0.4) 17.8(0.5) 38.6(0.7)

12, 3.3(0.2) 5.8(0-3) 9.9(0.4) 17.8(0.5) 39.8(o.7)

CO 3.3(0.2) 5.8(0.3) 9.9(0.4) 17.8(0.5) 40.0(0.7)

r- 6

6 2.3(0.•3) 4•.0(0.•3) 6.(0.4) 12.o(o.6) 26.0(0.7)

12 2.3(0.3) 4.o(o.3) 6.7(0.4) 12.2(o.6) 28.3(0.7)

28 .3(0.•3) 4.0(0.3) 6.7(o.4) 12.2(0.6) 28.5(0.7)

2;3(0.•3) 4.0(0.3) 6.7(0.4) 12.2(o.6) 28.5(0.7)

r= 8

8 1.8(0.3) 3.0(0.•3) 5.o(o.4) 9.2(0.6) 2o.6(0.7)

16 1.8(0.3) 3•.0(0.•3) 5.0(0.4) 9.3(o.6) 21-.0-.7)

O 1.8(0.•3) M.o(o.•) 5.o(o.A) 9•.ý(0.) 21.3.to7)
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Model 2. Fran (21), (18) and (19) we ccrputed the optimum Q (using the

am~ procedure aB In Model 1) for d - 0.05(0.05)0.20, p - 0.6(0.1)0.9 and

r = 3 and 4. With r = 2, the per cent gain in efficiency and the optizmu

Q are the same for both models. Table 2 gives the per cent gain in

efficiency and the optimum Q for the selected values of d, p and r. Also,

the per cent gain in efficiency and the optimum Q for Model 1 with a oo

are given for camparison.

Table 2. Per cent gain in efficiency of x• over x 0 , and in

parentheses optimum Q

P
d 0.6 0.7 0.8 0,9

0.05 8.7(0.4) 15.4(0.5) 28.7(0.6) 56.1(0.7)

0.10 8.3(0.4) 14.4(o.4) 25•0(0.5) 46.8(o.6)

0.15 8.0(0.3) 13.5(o.4) 22.9(0.5) 41.2(o.6)

0.20 7.6(0.3) 12.6(o.4) 2o.8(0.5) 36.1(o.6)

Model 1 7,3(0.3) 12.4(0.4) 22.4(0.5) 47.0(0.6)

r = 44

00.5 8.0(0.4) 14.3(0.5) 2.9(0.6) 49.3(0.7)

0.10 7.1(o.4) 12-3•(.5) 21.20.6) 37.0(0.7)

0.15 6.3(o.4) 10.•7(.4) 17.9(0.5) 29.9(0.6)

0.20 5-5(o.4) 9.8(0.4) 15.05(o.) 25.0(0.6)

Model 1 5.8(0.3) 9.9(0.4) 17.8(0.5) 40.0(0.7)

Table 2 shows that model 1 is fairly robust to moderate deviations as

shown by the alternate aritimetic model calculations, and the optiumi Q for

models 1 and 2a re either the sime or deviate only by 0.1.
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4.3 Variance of x- for the Current Population Survey rotation pattern

As described in Section 1, the rotation pattern for the Current Popula-

tion Survey is as follows: eight rotation groups each of n2 units are

identified for each sample and a rotation group stays in the sample for

four consecutive months, leaves the sample during the eight succeeding

months, returns for another four consecutive months and then drops out.

Therefore, the sample size is n' = 8n2 = 2n, r = 4 andr m- 8. On any

occasion, 4 n2 of the units in the sample are in the first cycle and the

remaining 4 n2 units are in the second cycle (since there are only two

cycles for each rotation group). The composite estimator x- can be written

as
-O N

X6 Z~ Z~- V k I akai0 k-l

with variance

2S)2 ["] 2 2V -X( ,.,,( N E-

-co
+ N Z E(vak vak) Sqal (22)

'.0

where vak - W, k/2 and wak are the weights defined in (7) and (8). Also,
E2 E( 2"

E(v~k - I E~u ak for a a- , o-1 , a-3;

E(vak v.,k) 11 E(v,,k wck) for a' a o-9, ... , cx-15; 4,a = 0, -1, ... , -co,

and all other expectations are zero. Therefore, using the expressions for

.(w,, lk) ,M= lT a, ,k) the variance of x is easily obtaine fro (22).

5. VARI4 COF d;:AN~D OP]MDUNQ

5.1 Variance of d.

The composit. estimator of the chane,, 7o - 7.1 , is d; - - ,
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with variance

V(dof) - V(7k) + V(7x' 1) -2 Uov(o 7J)

The derivation of V(79i) and Cov(x, Xl ) is similar to that of V(7). Hence,

without derivation, we have given the general formula for V(dm,) in Appendix C.

For Model 1 the general formula reduces to
v(I 2n-3 ...., So2 (1.Q

0 ' )Ni - n)s n "(l - Q)2 (i - Q2 ) 1 _ (Qo)r+"

[- (r-1)2p + (2r 2-_5r+3) op + r(r - 1) $2 + (r 2 .r.3) Q2P

- r(3r-4) Q2p2 . r(2- }) Q2 rQ3 + (3r 2.2r+l) Q3p

- r(3r-2) Q3 p2 + r(r-l) Q3p 3 . r(r-1) Q4 P2 + r(r-l) Q4P3

"+ rpr'! r(r-l) p - (r-1) p2 r2Q .r(r-3) Qp - (r -3r+3) oP2

"+ r 2Q2 + r(r-3) Q2 + (2_3r+3) Q22. r(r-l) Q3p + (r-1) Q3p2 ]

"+ Qmp+l [ (rl)2 - (2r2.5r+3) Q. r(r-) QoP - 3(r-1) Q2

" 3r(r-) Q2 p + (r2-r-1) Q3 - r(r-3) Q3p - r2Q3P2 + rQ4

Sr(r+l) Q4p + r2Q4p2J + Qe+r pm+r [-(r-1) + (r-1) p

+ 3r(r-) Q - 3(r-1) Qp + r2Q2 - (6r - 7r + 3) Qep + r(2r-1) QP

- r2Q3 - (r 2 2_-) Q~p + r(4r-5) Q3p2 - r(r-1) Q3p3 + r(r-l) Q4P

r r(r-l) Q4 -3 J. (23)

The special case xak , xa•k provides a check on (23). Then
-00

do' (1 Q) E Q'(x7-x.a a-)Oo0

and, using the formulae for Cov(ic,, 7) given in sub-section 4.1, we obtain

after simplification

v(d) 2n2S0 (_Q)(
n ( J._)•Qr+m) (•"Qr. •) (24)
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SWith p = 1, (23) reduces to (24), thus providing a check.

The per cent gain in efficiency of 1 over the estimator do based on

the difference between the sample means of two independent sauples on

occasions 0 and -1 is

V(dO) - V(d )
0Vd) 0 x 100 (25)

where

(26V(do -- 1 - s2 (26)

Since the results in sub-section 4.2 indicate that model 1 is fairly robust

to moderatt.,deviations, we did not investigate model 2 for change estimation.

5.2 Optimum Q and per cent gain in efficiency

As in the cse, of the current estimate, we ignored the term involving

1/Nwin (23) and (26) and computed the per cent gain in efficiency from (25)

for Q = 0.1(0.1)0.9, p = 0.5(0.1)0.9, r = 2(1)4(2)8 and m = sr with s =

1(1)4. ac. The optimum Q for each cznbination (r, p, m) is that value of

Q which maximizes the per cent gain in efficiency. Table 3 gives the per

cent gain in efficiency of d1 over d0 and the optimum Q for do'. The per cent
0

gain in efficiency of do over do and the optimum Q for x• from Table 1 is

also included in Table 3. It may be noted that in most situations we are

forced to use the same value of Q for both x and d'. If the current

occasion estimate is more important, we may prefer to use the current

'ccasion optimum Q for both d' and x".

Table 3 shows that considerable gains in efficiency of do over do can

be obtained 'using the optimum Q for d;, even with moderately large p. Also

the optimum Q for X1 leads to substantial gains in efficiency of d0 over d,

though the gains with the optimum Q for d•, are larger, particularly for
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high p. Unlike the current occasion case where the optimum r is 2, the gain

in efficiency of d' over dO increases with r. Therefore, if both current

occasion and change are of interest, we may prefer to use an r other than 2.

The variance of d' for moderate and large values of m differs very little0

from the variance of d' with m = oo. The optimmn Q for d' is unaffected by

the value of m in most of the cases.

6. CONCLUDING REmAmE

In many practical situations, the exponential correlation pattern

(model 1) may be quite reasonable. Also, a comparison with the arithmetic

correlation pattern (model 2) showed that the exponential correlation

pattern was fairly robust to moderate deviations. However, in a monthly

survey with characteristics str--gly influenced by seasonal variations, the

correlation between occasions 12 months apart may be about the same mag-

nitude (or even larger) as compared to the correlation between consecutive

occasions. In such situations, model 3,

Sa,12j- So -= S = P ' S2  i= O, i, ... , II; j O, I, 2,.

where PL is the correlation between consecutive occasions and p2 is the

correlation between occasions 12 months apart, may be more appropriate.

Then, it is necessary to generalize the composite estimators 7- and 46 and

construct composite estimators which take advar+age of both p and P 2

explicitly. This problem ha) bm,,- . investigated and the results will be

published in a later paper. Ir generalized composite estimators lead

to considerable gains in efficiency over x-- and w, when p, and P 2 are of

approximately the same magnitude.
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In large scale surveys multistage sampling is often employed. In a

two-stage design, rotation sampling is commonly used within each primary,

and, therefore, the composite estimators reduce the within primary varia-

tion only. It may be reasonable to assume that the correlation of

secondaries between occasions is approximately the same in each primary. Then

we could use the tables for the optimum Q given here and construct cum-

posite estimators, with the same Q, within each selected primary, and then

determine the composite estimator of the over-all population mean. For the

estimator of variance, we could use the estimator based on the mean square

of the within primary ccmposite estimators (this estimator of variance is

unbiased if the primaries are selected with replacement; if the primaries

are selected without replacement it over-estimates the variance).

We wish to thank Professor H. 0. Hartley for helpful suggestions.

APPENDIX A

The expectations E(wak WVa,k)

The expectations NE(wok wak), a < -1, are as follows:

2
NE(wO,k wn(s+l)(r),k) - (1 +

nn 1 2-n2 n2l +_(r+m)+l

E(WO,k w.s(r+m).l,k) - n- ( n +n 1l

2

wO r (1 + 22 Q) [ t(1 - Q) -r] QSr +m)+t
'r n n 1. t = 2, ... , r-2.

n. -n. i Qs(r+m)+r-1E(WO,k w.s(r+m).r+l,k) - (i + n n) ) sr)

n2 r1 (r1 )+m+Z

NE(vo,k w s(r4•).m!l,k) (I + - Q)(l - Q)Q
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22 (+ 2 n2 n2~ Q2)a-
IMI('O,k w-s(r+m)-m-t,k) y nnl n1 n.

n n 1

NE(wO,k W..s(r~m).r-.t,k) -0, t 0,1 ... , m-r.

The expectations NE(wkWl) a, a, 1, (a A at), are as follow:

NE(a~ W~sr~,)k)- .. (2 + 2 n2Q + 1) B(r4m)'2a

NE(Wcx,k 'wa..(r+m,)t,k) - -r n 1-~ s(~)2~

2 2) t s.rim)-2ci+.t
NE(wa,k Wa-s.(r+m)-r+1A) ' - =- (1 -~

_ n (1+ n )( + 2) Qs(r~in).2af-lt+
NE(vkwa-srm-r1k n 2 n- n~ 1i

8(akWf-~~m--1k n2n 1 n1

~~"a~~~ic~ '2urm~~~) 4~( t)(1 _ Q)2 Qs(r+m)-2a~4m+t

t = 2, .*., r-1

NE(wd V'..s(r+m)-r-t,k) "0 t o 0, .. ,m-r.

APPENDIX B

Variance of;0

The variance of x*for the general rotation pattern is

2( n ( j 8 
2  -2 2  n 2(1.
nn1 n 1,

2
00 QB(r+m) 2ý_
E Q 0,-B(r+m).-m- + 22 ni + ,@rm1= "m2 ýs-1
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2
n r-i n2 n2+ 2 2- 2. Qmti+2 Q 2 IQ2) n i-Q)(I + 2 Q) t].

n n t=2 nl " 2 1
2

O Qs(r-+m) n+ 2 r-i Ql +-2 (+- t - Q)-
S=O 1n n t=1

OD nm) 2 (2 n2 -O -2a 2Z mSo + 2 Q Q + 1) E Q S
s=O 1= 1 00-1 a

2 2 n 2 -O .2a o, n3
+ 2 n;ý-•-" + 2 n-- Q+ 1) -E Q- (Z~ ~ 2 Q2

nnQ a-sl 2(r+m)" 2 - 2s1=1 a~ ~r n1 (1

r-2 -2t s(r+m) (2 n n
Z t Z Q Q S ,22(.m),t -2 Q)(Q' )(1 +--r

t= l C =- i S= O - - n 1 nl

-0o -2air-1 CD s(r+m) n2 n2 Q n2
Z Q Z Qs(r+m).r+1 - 2 -7 (i + )(Q + )

- Q-2*m+1 tQs(r+m% n2r r-n

z z s2,o1Z(rQm).m.1 - 2 -2- (1 - Q)2 E (r - t)
•=-I S=O n n1  tx2

-C Q- 2c+m+t O s(r+m)
Z- QZ, a, .-s (r+m)-m-tCIM-i S=O

r-1
This formula is valid for r> 2. For r - 2, replace the terms involving Z

r-2 1
and Z by zero.

2
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APPENDIX C

Variance of d

The variance ofel' for the general rotation pattern ise
0

V~d~) -Q)2V(- + 2Q 1)S 2 + Q2(1 l S2

2~~, x 0 QLv2 n N 0 n 1 n 0

+ 2 (1 1 ) 2 1 1)S2(

2(1- 1D s(r+m) r-1l
2 E Q E

Q 8=0 t=1

n2~ (n1 + n2 Q) (r - t) n, - tnQ]Ssrmt

2~ Q(n. + n,,Q)(.n1 -tn 2).
rm1

S + Q2 -(fl n)S1,srmn
0'srm-- 1-t.2 -,-s(r+m)-t-1T

ni

S-+ 2 E ( , ,- QSO - l - QS.1 -
1, ,-s 0,-a-iNQ1,.1

+ Q 2 S_1 81 )

2(1 - Q) OD Q(r~in) r-1 et n2
2 Qm ~ 229 (n,+1 2Q t(n 1 +n 2Q) nQ].

80,-s(r+m)-m-t

,724[ t(n1 + n2Q) - nQ3 S ,srm--- + "I (t -1) 
2

fnn1 n
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n 2 2(1 - Q) 00 Qs(r+m)
--- (t - 1) Q(nI + n2 Q) S-l,.s(r+m). E

nn1 Q s=1

1(n1+ n2 q2) SO,(m) Q(ni + n 2 Q) S0,.s(rm).l

1,2 1 Q(nl + n2 Q) S-l,.s(r-m)•
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